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Abstract—Hybrid quantum-classical algorithms such as the
quantum approximate optimization algorithm (QAOA) are con-
sidered one of the most promising approaches for leveraging
near-term quantum computers for practical applications. Such
algorithms are often implemented in a variational form, com-
bining classical optimization methods with a quantum machine
to find parameters to maximize performance. The quality of the
QAOA solution depends heavily on quality of the parameters
produced by the classical optimizer. Moreover, the presence of
multiple local optima in the space of parameters makes it harder
for the classical optimizer. In this paper we study the use of a
multistart optimization approach within a QAOA framework to
improve the performance of quantum machines on important
graph clustering problems. We also demonstrate that reusing
the optimal parameters from similar problems can improve the
performance of classical optimization methods, expanding on
similar results for MAXCUT.

Index Terms—quantum approximate optimization, multistart
optimization, graph clustering

I. INTRODUCTION

A number of quantum computing devices have recently
become available to researchers [1], [2]. These Noisy Interme-
diate Scale Quantum (NISQ) devices currently have less than
100 qubits, high error rates, and a restricted set of available
algorithms [3]. The famous Shor’s algorithm [4] requires exe-
cuting thousands of gates [5], something that is impossible to
do accurately without error correction on quantum machines.
At the same time, there is a growing interest in applying
emerging NISQ devices to practical applications [6]–[8].

Multiple near-term algorithms have been introduced in an
attempt to take advantage of NISQ devices. Among the most
promising are hybrid quantum-classical algorithms, includ-
ing the Variational Quantum Eigensolver (VQE) [9] and the
Quantum Approximate Optimization Algorithm (QAOA) [10].
These algorithms combine a classical optimizer with a quan-
tum machine where the quantum evolution is performed by
applying gates to some initial state (in the case of QAOA,
the initial state is an equal superposition of basis states), with
the goal of preparing the state with desired properties. For
example, in VQE the goal is to prepare the ground state (i.e.,
the state corresponding to the smallest eigenvalue) of a given
system. An advantage of hybrid algorithms is that the quantum
evolution is described by a shallow-depth circuit, enabling
them to be run on NISQ computers without error correction.

The shallow depth of the circuit is achieved by parameterizing
the gates. An example of a parameterized gate is a rotation
around the Z axis (RZ), where the parameter is the angle
of the rotation; the optimal quantum evolution then can be
found by varying the parameters of a shallow set of gates. In
this paper we address QAOA, but our approach is applicable
to other hybrid algorithms, including VQE. Although optimal
parameters can be found analytically for some problems, pa-
rameters within QAOA typically are found by using a classical
optimizer in a variational setting. Therefore, in this paper we
consider only the variational implementation of QAOA.

In QAOA, the quantum evolution is performed by apply-
ing a series of parameterized gates, commonly referred to
as the ansatz. These gates are parameterized by variational
parameters, denoted by θ. At each step, a multiqubit trial state
|ψ(θ)〉 is prepared on the quantum coprocessor by applying the
ansatz. The state is then measured, and the result is used by the
classical optimizer to find new parameters θ, with the goal of
finding the ground-state energy EG = minθ 〈ψ(θ)| ĤC |ψ(θ)〉,
where ĤC is the cost Hamiltonian. The ground state encodes
the global optimum of the classical optimization problem.
This variational cycle continues until the classical optimizer
converges or a solution of acceptable quality is found.

Such hybrid algorithms are considered the most promising
path to demonstrating quantum advantage, that is, demon-
strating superior performance of a quantum system on some
problem when compared with state-of-the-art classical meth-
ods. Demonstrating quantum advantage is a prerequisite for
quantum computers to become a valuable high-performance
computing resource. Variational hybrid algorithms, including
VQE and variational implementations of QAOA, require reli-
able classical optimization methods to obtain solutions of good
quality. Moreover, the performance of classical optimization
methods in terms of the number of function evaluations
directly translates into an improvement in performance of
a variational quantum algorithm. Therefore, it is imperative
that efficient and reliable optimization methods be developed
for finding optimal variational parameters. Unfortunately, the
parameter space for these problems is nonconvex and contains
many low-quality, nondegenerate local optima [11]. Figure 1
shows an example energy landscape of a QAOA objective
function with two parameters. This landscape has many low-
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quality optima that a local optimizer can get stuck in. In
this paper, we address this challenge by using a multistart
local optimization method. Our results are twofold. First, we
explore direct optimization of QAOA parameters under real-
istic time constraints and show that the multistart framework
APOSMM [12], [13] is able to find better parameters than
single-start local search methods can (when using the same
number of objective evaluations). Second, we demonstrate that
the optimal QAOA parameters found for a given problem
can be reused as an initial point for similar problems, both
improving the quality of the solution and reducing the number
of evaluations required to obtain it.

QAOA has attracted considerable attention as a candidate
algorithm for NISQ devices. When QAOA was originally
introduced in 2014, it was shown to outperform the state-
of-the-art classical solver for the combinatorial problem of
bounded occurrence Max E3LIN2 [19]. (Thereafter, an im-
proved classical algorithm was introduced that outperformed
QAOA on this problem [20].) A recent paper [21] shows
that QAOA (using a circuit with modest depth) can exceed
the performance of Goemans-Williamson [22] algorithm for
MAXCUT. In addition to these empirical results, theoretical
results demonstrate that QAOA for MAXCUT improves on
the best-known classical approximation algorithms for certain
graphs [23], [24]. Although there is an active discussion about
exactly how many qubits are required for meaningful quantum
speedups [6], [25], the future of QAOA looks bright.

II. PROBLEM DEFINITION

Consider a cost Hamiltonian ĤC encoding the classical
optimization problem (later in this section we present a cost
Hamiltonian for network community detection). Because
the underlying optimization problem we are solving is
maximization, we construct the cost Hamiltonian ĤC such
that its highest-energy eigenstate encodes the solution, as
opposed to the ground or lowest-energy state commonly used
in VQE.1 The goal of the hybrid algorithm is to prepare
this eigenstate. In hybrid quantum-classical algorithms, the
evolution is performed by applying a set of parameterized
gates (ansatz). The goal then is to find a set of parameters
that describe the evolution that prepares the desired state.

In QAOA, the quantum evolution starts in the initial state
|+〉⊗n. Then the evolution is performed by applying two
alternating operators based on the cost Hamiltonian ĤC and
mixing Hamiltonian ĤM =

∑
i σ̂

x
i :

|ψ(θ)〉 = |ψ(β,γ)〉

= e−iβpĤM e−iγpĤC · · · e−iβ1ĤM e−iγ1ĤC |+〉⊗n .
(1)

Here p is the number of alternating operators or QAOA
“steps.” Then the objective function f (i.e., the energy of ĤC
in the state |ψ(β,γ)〉) is

f(β,γ) = −〈ψ(β,γ)| ĤC |ψ(β,γ)〉 . (2)

1Note that in our case it is just a matter of convention, since introducing a
minus sign changes a maximization problem into a minimization problem.

Based on the value f(β,γ), the classical optimizer chooses
the next set of parameters β,γ with the goal of finding
parameters that minimize f :

β∗,γ∗ = argminβ,γ f(β,γ)

= argminβ,γ(−〈ψ(β,γ)| ĤC |ψ(β,γ)〉).
(3)

The objective function f is periodic with respect to β and
γ, allowing the parameters to be restricted to βi ∈ [0, π],
γi ∈ [0, 2π]. Therefore the optimization domain is compact:
(β,γ) ∈ D = ([0, π]× [0, 2π])p.

We explore QAOA applied to the modularity maximization
problem for the network community detection. Also known
as graph clustering, network community detection aims to
group vertices of the graph so that they are nontrivially
connected compared with a random graph model. Modularity
maximization often (but not necessarily) groups vertices so
that there are as many edges as possible within the groups
and as few as possible between the groups. Formally, for
an undirected graph G = (V,E) with two communities,
modularity is defined as in [26]:

C =
1

4|E|
∑
ij

(Aij −
kikj
2|E|

)sisj =
1

4|E|
∑
ij

Bijsisj , (4)

where A is the adjacency matrix of G, ki is the degree of
vertex i ∈ V , and the variables si ∈ {−1,+1} indicate
community assignment of vertex i. That is, si = −1 denotes
vertex i as being assigned to the first community, and sj = +1
denotes that vertex j is assigned to the second community.
Modularity maximization for general graphs is NP-hard [27]
and has a variety of applications in complex systems [28]–[32].

The modularity maximization problem can be mapped onto
QAOA by promoting variables si in (4) to Pauli spin operators
σ̂z [6]–[8], resulting in the Hamiltonian

ĤC =
1

4|E|
∑
ij

Bij σ̂
z
i σ̂

z
j . (5)

Multiple ansatzes (sets of gates used to produce trial state
|ψ(θ)〉) have been explored for QAOA, with the hardware-
efficient ansatz [33] (originally proposed for VQE) being one
of the most successful [6]. A similar ansatz leveraging nearest-
neighbor interactions available on the device has been shown
to achieve a better-than-random-guess approximation ratio for
the MAXCUT problem on 3-regular graphs [34]. In this work
we do not consider these ansatzes, however, because at the
time of writing there is no evidence that QAOA with such
ansatzes can beat the best classical algorithms. Instead, we
focus on the alternating operator ansatz in (1).

III. RELATED WORK

While the most commonly used strategy for identifying
optimal QAOA parameters is using a classical optimizer in
a variational loop, QAOA is not necessarily a variational
algorithm. For example, Parekh et al. show that for one-
step (p = 1) QAOA for MAXCUT on k-regular triangle-free
graphs, parameters can be derived analytically [23]. Wang et
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Fig. 1. Energy landscape of QAOA objective function 〈ψ(β, γ)| ĤC |ψ(β, γ)〉 for modularity maximization community detection on connected caveman
graph [14], [15] with 4 cliques of 4 vertices. Higher (white) is better. Left: the points evaluated by a single run of COBYLA [16]–[18]; each point corresponds
to a pair (β, γ) that the local optimizer queried. Right: trace of APOSMM [12], [13] coordinating multiple COBYLA instances. Both methods were given a
budget of 200 function evaluations.

al. show a similar result for one-dimensional antiferromagnetic
rings [24]. More generally, Farhi et al. [10] proposed discretiz-
ing parameters into a grid. For N -qubit QAOA, however, this
approach requires NO(p) evaluations, making it impractical
even for small p. Finding good QAOA parameters remains a
challenging problem, which motivates this work.

A. Parameter optimization in hybrid algorithms

Despite the recent advances in gradient-based methods [11],
[21], [35]–[38], gradient-free black-box methods remain the
most common approach for optimizing parameters in hybrid
quantum-classical algorithms. A variety of methods have
been used, including the Nelder-Mead method [39] (for both
QAOA parameter optimization [25], [35] and training quantum
Boltzmann machines [40]), Bayesian methods [41], Powell’s
method [42], and an interior-point minimization method [43].
Researchers resort to derivative-free methods because analytic
gradients for quantum circuits may not be available and ap-
proximating gradients can be computationally expensive [21].
(In some cases, algorithmic differentiation techniques may
provide gradient information [36].) Since gradient-based meth-
ods can be sensitive to noise [44], they may be less suitable
for noisy intermediate-scale quantum hardware.

A number of recent advances in finding good parameters
have been made in the recent years, potentially making
their optimization simpler. For QAOA, multiple papers have
shown connections between adiabatic schedule and QAOA
parameters [11], [21], [45].

Zhou et al. [11] show that even at small depth p the
schedule defined by optimal QAOA parameters is reminiscent
of adiabatic quantum annealing, where ĤC is gradually turned
on while ĤM is gradually turned off (see Sec. II). Similar
results were found by Crooks [21]. Additionally, Zhou et

al. [11] demonstrate that the optimal values β∗,γ∗ have
small variation between similar problem instances, a finding
that we confirm in this work for a different graph problem
(see Sec. V). Zhou et al. use these insights to introduce a
novel parameterization of QAOA and a heuristic optimization
scheme based on it.

Brandao et al. [45] show that for MAXCUT on 3-regular
graphs, the objective function value is concentrated; that is,
typical instances have nearly the same value of objective
function. They make a case that the same holds for any com-
binatorial search problem where the number of clauses with
a given variable is bounded (e.g., MAXCUT on a bounded-
degree graph). They propose reusing optimal parameters be-
tween problems that come from the same distribution and
refining them using a local optimization heuristic. In this work,
we successfully apply this strategy to modularity clustering, a
problem where the number of clauses in which a variable can
appear grows with n (see Sec. V).

Periodicity of the objective function with respect to QAOA
parameters, visible on heatmaps in Fig. 1, has been demon-
strated for MAXCUT [11], [24]. The periodicity was also
observed for quasi-maximum-likelihood decoding of classical
channel codes [46]. This can potentially allow for further
restriction of the domain, eliminating some of the local optima
and making the optimization problem easier. However, the
theoretical results so far are problem specific. Therefore, we
restrict our optimization domain to βi ∈ [0, π], γi ∈ [0, 2π],
following [10]. Note that this differs from the approach in [21],
where the values of β and γ were not constrained. A recent
result shows that exploiting the periodicity of variational
parameters of certain ansatzes for QAOA and other variational
algorithms can improve optimization performance [47].



B. Derivative-free optimization methods

Selecting β and γ values that maximize the objective
function in (3) is a central optimization problem in variational
algorithms. Since the gradient of the objective function with
respect to β and γ is unavailable on real quantum computers,
researchers usually resort to so-called derivative-free optimiza-
tion (DFO) methods: those that work only with observations of
the objective function. Classical derivative-free direct-search
methods are commonly applied to such problems: for example,
Nelder-Mead is the default method for VQE problems in
Grove [48]. Yet McClean et al. [49] shows that modern DFO
methods achieve considerable benefits in terms of the num-
ber of function evaluations required. The BOBYQA method
[50] is one such method for bound-constrained derivative-
free optimization that builds quadratic models of the objective
and optimizes them over a trust region in order to produce
candidate points.

In the numerical optimization community, one commonly
starts local optimization methods from different initial con-
ditions in an attempt to identify better optima. While such
an approach may be easy to implement, it may result in
unnecessary objective function evaluations. Assuming there
are a finite number of local optima, the ideal approach would
identify each using only a single local run.

The multilevel single linkage method (MLSL) [51], [52],
uniformly samples points over the domain D and starts runs
from those points that do not have a better point within a
ball of some radius. They show favorable results for a specific
approach for updating the radius as the number of sampled
points increases, although such results are only asymptotic.
MLSL was generalized by APOSMM [12], [13] to consider
all points generated by an ensemble of local optimization runs,
and not just those sampled from the domain.

IV. DIFFICULTY OF OPTIMIZING QAOA PARAMETERS

In this section we present the results from using DFO
methods to find optimal QAOA parameters. We use the high-
performance simulator Qiskit Aer [53] to perform noise-
less simulations of QAOA circuits. We measure the qual-
ity of the solution found by six derivative-free local opti-
mization methods as implemented in the NLopt nonlinear-
optimization package [18]: BOBYQA [54], COBYLA [16],
[17], NEWUOA [55], Nelder-Mead [39], PRAXIS [56] and
SBPLX [57]. We compare their performance to the imple-
mentation of APOSMM from the libEnsemble library [58].
APOSMM coordinates multiple local optimization runs in an
attempt to identify better local optima. In this work, we use
BOBYQA as the local optimization method within APOSMM
(we denote this method as APOSMM+BOBYQA in figures).
The performance of all methods is evaluated using two-way
modularity maximization community detection problem on six
synthetic graphs with community structure: three instances of
connected caveman graph [14] and three instances of random
partition graph [59]. All graphs have between 10 and 12
vertices and were generated with NetworkX [15]. The code
used to perform the experiments is available [60].

We performed two sets of experiments. First, we set the
tolerances of local solvers to zero and allow them to run
until convergence. The quality of the obtained solutions was
then compared with the solutions found by APOSMM using
the same number of evaluations. We observe that APOSMM
finds solutions with a much higher value of the objective
function (see Fig. 2). Since APOSMM is allowed another local
optimization run after one has converged, a local method may
not take full advantage of the function evaluations budget. To
allow for a more equal comparison, we performed a second
set of experiments. In the second set, we set the tolerances of
local solvers to be equal to the tolerance of BOBYQA within
APOSMM and if the method convergence before exhausting
function evaluations, it is restarted at a different random point.
This restart scheme is essentially a naive version of MLSL.
These results are also compared with APOSMM (see Fig. 3).

For both sets of the experiments, we limit the number of
evaluations to 1,000. We choose this number as the realis-
tic number of evaluations based on the estimates in [25].
We use the same realistic if aggressive assumption of 1
millisecond per single run. Estimating objective function in
Eq. 2 requires thousands to tens of thousands measure-
ments in practice [25], [33], [41]; we use an optimistic
assumption of 1,000 measurements per run for obtaining the
statistics to estimate the objective function. This gives an
estimate on the time cost of performing the optimization equal
to (time per single run) × (1,000 measurements per run) ×
(1,000 evaluations) ≈ 16 min. Note that this runtime is still
orders of magnitude greater than the runtime of classical state-
of-the-art MAXSAT solvers applied to the same problem [25].
Additionally, as the hardware is rapidly evolving, it is not
possible to project these estimates into the future with cer-
tainty. However, it provides a useful estimate on the reasonable
number of calls to the quantum device in a QAOA run.

Results show that a single run of a local optimization
method cannot identify parameters (β,γ) corresponding to a
high-quality solution of underlying problem (i.e., a high value
of objective function). Fig. 2 shows that APOSMM is capable
of finding parameters corresponding to values of objective
function much larger than just the local solvers. This is partly
due to local solvers converging before exhausting the limit on
number of function evaluations (1,000).

If we set tolerances for local methods to the same values
as in APOSMM (the tolerances on change in the function
value to 10−3 and on the change in optimization parameters
to 10−2) and restart local methods after convergence, we
observe that APOSMM is still solving more problems within
the same budget of function evaluations. This is measured in
the data profiles in Fig. 3; these data profiles track the fraction
of problems solved to some level τ after a given number
of function evaluations. Explicitly, if tp,s is the number of
function evaluations required for each optimization method s
to solve problem p in the set of problems P , then the data
profile is

ds(α) =
|{p : tp,s ≤ α}|

|P |
.
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numbers of QAOA steps.
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identifying high-quality solutions on a large fraction of the test problems. Yet, we see that APOSMM+BOBYQA performs noticeably better.

where α is the number of function evaluations. Data profiles
require some definition of solving a problem to a level τ . For
these problems, an optimization method s is determined to
have solved problem p to a level τ after j evaluations if

f(x0)− f(xj) ≥ (1− τ)(f(x0)− f̃p), (6)

where x0 is the problem’s starting point, xj is the jth point
evaluated by the method, and f̃p is the best-found function
value by any optimization method on problem p. For example,
if τ = 0.01, the convergence test in (6) determines a method
to solve problem p when a point is evaluated with 99% of the
possible decrease on the problem (among the implementations
being compared).

Figures 2 and 3 demonstrate that finding optimal param-
eters becomes increasingly harder as the dimension of the
domain D (i.e., the number of QAOA steps p) increases. For
p = 1, BOBYQA and APOSMM solve most of the problems
(Fig. 3A) within 1,000 function evaluations, for p = 2 and
p = 4 the best-performing method (APOSMM) solves only

60% and 40% of the problems, respectively. These results
indicate that even for small number of QAOA steps (p = 4)
direct optimization of variational parameters is hard under
realistic time constraints.

V. REUSING OPTIMAL QAOA PARAMETERS

Sec. IV presents results demonstrating the complexity of
finding good QAOA parameters under realistic time con-
straints. Recently a number of researchers proposed amortizing
the cost of finding good QAOA parameters for MAXCUT
by reusing optimal parameters found for a given problem
on similar problems [11], [21], [45]. We confirm and extend
these findings by reusing optimal QAOA parameters found
by exhaustive search. Optimal parameters for QAOA for
modularity maximization on a given graph are used as an
initial guess for the local solver on a similar graph constructed
by removing an edge from the original graph. This simulates
a realistic scenario of solving community detection on a
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Fig. 4. Ratio between the value of the objective function found by an
optimization method and the best-found value. Left (A): we compare the
best-performing local method and APOSMM with optimal points from
similar problems (“w/ reused pts”) and with random initial points. Heights
of bars represent median over (10 seeds per problem) × (6 problems) ×
(5 different random edges removed) = 300 runs. Right (B): for each problem
we remove only one “worst-case” edge. Error bars represent quartiles (25th
and 75th percentiles). Reusing precomputed optimal points allows optimiza-
tion methods to find better solutions (corresponding to higher objective values)
within the same budget of function evaluations.

dynamical graph, for example, a social network where new
friend connections are dynamically added and removed.

We estimate true optimal parameters by setting the toler-
ance on the change in the function value to 10−3 and the
tolerances on the change in the parameters to 10−2 and restart-
ing BOBYQA after each convergence until 100,000 function
evaluations have been used. We observe that this exhaustive
approach identifies multiple high-quality local optima. We then
use these high-quality QAOA parameters as initial guesses for
local methods and APOSMM. After a local method converges,
it is restarted from the next-best local optima.

Our contribution extends previous work in two ways. First,
we consider a different optimization problem, namely, mod-
ularity community detection. Second, in addition to random
similar problems, we consider “worst-case” small changes.
To simulate a “worst-case” scenario, we remove an edge
from the graph that has the greatest impact on its spectrum.
Concretely, we compute the spectrum of the graph Laplacian
before and after removing an edge. The change in the spectrum
is measured by computing the Euclidean distance between the
eigenvectors of the graph Laplacians. The graph spectrum has
deep connections to many optimization problems on graphs,
including graph partitioning and community detection [61],
[62].

Figure 4 presents the results. We observe that using op-
timal parameters from similar problems allows optimization
methods to find high-quality solutions under realistic time
constraints. Thus, we are hopeful that the high cost of finding
good QAOA parameters can be amortized by reusing the
parameters from similar problems.

VI. DISCUSSION

This paper present results on finding optimal QAOA pa-
rameters to improve the performance of quantum optimization
solvers. We show that multistart methods such as APOSMM

can utilize a fixed number of function evaluations more
efficiently by interleaving multiple local optimization runs
and considering all (β,γ) parameters generated by them. We
observe that as the number of QAOA steps and the dimension
of the corresponding optimization domain D is increased,
the optimization problem becomes increasingly hard. These
results highlight the need to develop more efficient approaches
to finding optimal parameters to accelerate and improve the
performance of QAOA—a challenge because, in order to
compete with state-of-the-art classical solvers on problems
with fewer than 200 variables, QAOA has to run in no more
than a minute [6], [25]. An additional challenge is presented
by the high levels of noise on near-term hardware.

We show that the obstacles can be partially addressed by
reusing optimal parameters found for a similar problem. We
observe that parameters can be reused both for similar prob-
lems with a random change introduced and in “worst-case”
scenarios, where the change in the underlying problem has the
greatest impact on its structure. For example, reusing optimal
parameters found for p = 1 using BOBYQA or APOSMM
for a dynamic graph over 1,000 changes and allowing local
methods a realistic 10–30 iterations in order to refine reused
optimal points at each iteration, would bring amortized cost
down from (1 ms per run)× (1,000 measurements per run)×
(1,000 evaluations) ≈ 16 min minutes to a more competitive
≈ 1 second. Reusing parameters and employing heuristic
techniques such as FOURIER proposed in [11] could bring
down amortized costs of QAOA run even further. We believe
this could make quantum optimization solvers a valuable
extreme-computing resource.

The limited connectivity between qubits in many hard-
ware implementations presents an additional challenge. For
example, superconducting qubit technology, developed by,
among others, IBM, Rigetti, and Google, provides only
nearest-neighbor connectivity with qubits arranged on a two-
dimensional lattice. The modularity maximization graph clus-
tering problem discussed in this paper requires all-to-all con-
nectivity. The connectivity limitation can be addressed by a
SWAP network [21], [63], [64] with only O(N) overhead
(where N is the number of qubits). Additionally, ion-trap
architectures (the most famous implementation developed by
IonQ) do not have the same connectivity limitations, because
they allow the application of gates between any pair of qubits.

All these factors strengthen the potential of QAOA. As
hardware continues to improve and more advanced techniques
for parameter optimization are developed, QAOA has the
potential to outperform classical state-of-the-art solvers.
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